Proximal Point Algorithm for Quasi-Convex Minimization Problems in Metric Spaces
نویسندگان
چکیده
منابع مشابه
Proximal Point Algorithm for Quasi-convex Minimization Problems in Metric Spaces
In this paper, the proximal point algorithm for quasi-convex minimization problem in nonpositive curvature metric spaces is studied. We prove ∆-convergence of the generated sequence to a critical point (which is defined in the text) of an objective convex, proper and lower semicontinuous function with at least a minimum point as well as some strong convergence results to a minimum point with so...
متن کاملProximal quasi-normal structure in convex metric spaces
We consider, in the setting of convex metric spaces, a new class of Kannan type cyclic orbital contractions, and study the existence of its best proximity points. The same problem is then discussed for relatively Kannan nonexpansive mappings, by using the concept of proximal quasinormal structure. In this way, we extend the main results in Abkar and Gabeleh [A. Abkar and M. Gabeleh, J. Nonlin. ...
متن کاملCoincidence Quasi-Best Proximity Points for Quasi-Cyclic-Noncyclic Mappings in Convex Metric Spaces
We introduce the notion of quasi-cyclic-noncyclic pair and its relevant new notion of coincidence quasi-best proximity points in a convex metric space. In this way we generalize the notion of coincidence-best proximity point already introduced by M. Gabeleh et al cite{Gabeleh}. It turns out that under some circumstances this new class of mappings contains the class of cyclic-noncyclic mappings ...
متن کاملAn Accelerated Inexact Proximal Point Algorithm for Convex Minimization
The proximal point algorithm (PPA) is classical and popular in the community of Optimization. In practice, inexact PPAs which solves the involved proximal subproblems approximately subject to certain inexact criteria are truly implementable. In this paper, we first propose an inexact PPA with a new inexact criterion for solving convex minimization, and show that the iteration-complexity of this...
متن کاملW-convergence of the proximal point algorithm in complete CAT(0) metric spaces
In this paper, we generalize the proximal point algorithm to complete CAT(0) spaces and show that the sequence generated by the proximal point algorithm $w$-converges to a zero of the maximal monotone operator. Also, we prove that if $f: Xrightarrow ]-infty, +infty]$ is a proper, convex and lower semicontinuous function on the complete CAT(0) space $X$, then the proximal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Functional Analysis and Optimization
سال: 2017
ISSN: 0163-0563,1532-2467
DOI: 10.1080/01630563.2017.1374970